TRASFORMAZIONI ELEMENTARI DEI GRAFICI DELLE FUNZIONI

prof. Danilo Saccoccioni

Il grafico cartesiano di una funzione reale $f: A \to B$ è l'insieme dei punti del piano corrispondenti alle coppie dell'insieme $G = \{(x, f(x)), con x \in A\}$.

In queste pagine ci proponiamo di analizzare cosa succede al grafico di una funzione quando quest'ultima subisce una trasformazione elementare; considereremo le seguenti possibili trasformazioni:

1. g(x)=-f(x) Funzione opposta (ribaltamento verticale)

2. g(x) = f(-x) Ribaltamento orizzontale

3. g(x) = f(x) + k Traslazione verticale

4. g(x) = f(x+k) Traslazione orizzontale

5. $g(x) = k \cdot f(x)$ Dilatazione/contrazione verticale (k positivo)

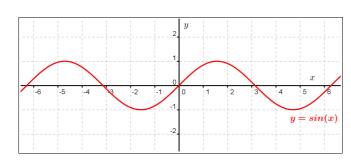
6. $g(x) = f(k \cdot x)$ Dilatazione/contrazione orizzontale (k positivo)

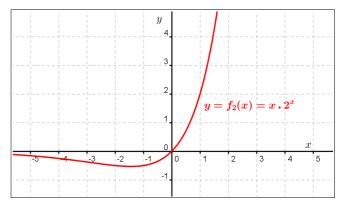
7. g(x)=|f(x)| Valore assoluto della funzione

Per ciascuna trasformazione considereremo due esempi,

 $y = f_1(x) = \sin(x)$ e $y = f_2(x) = x \cdot 2^x$,

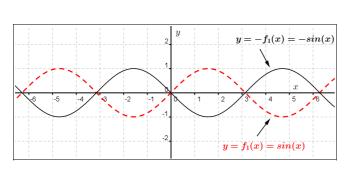
i cui grafici sono riportati di seguito:





1. FUNZIONE OPPOSTA – RIBALTAMENTO VERTICALE g(x)=-f(x)

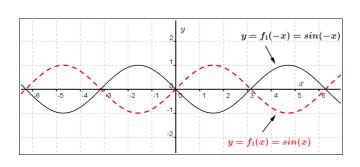
In generale, se anziché la funzione y=f(x) si considera la funzione y=-f(x), è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ordinate di segno opposto:

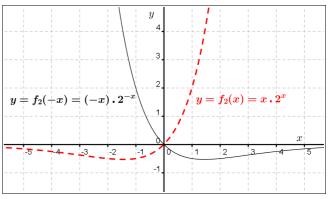




2. RIBALTAMENTO ORIZZONTALE g(x) = f(-x)

In generale, se anziché la funzione y=f(x) si considera la funzione y=f(-x), è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ascisse di segno opposto:

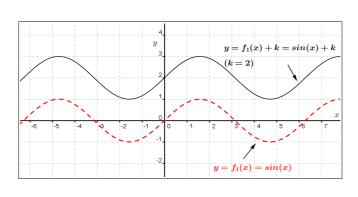


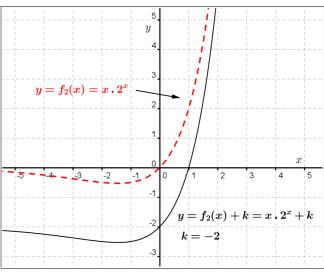


3. TRASLAZIONE VERTICALE g(x) = f(x) + k

In generale, se anziché la funzione y = f(x) si considera la funzione y = f(x) + k, è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ordinate spostate di k; in particolare,

- \circ se k > 0 la traslazione è verso l'alto (esempio a sinistra, con k = 2);
- \circ se k < 0 la traslazione è verso il basso (esempio a destra, con k = -2);

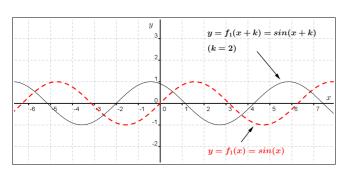


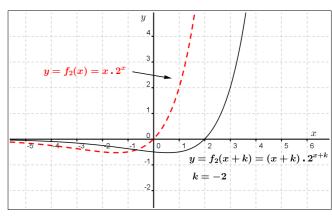


4. TRASLAZIONE ORIZZONTALE g(x)=f(x+k)

In generale, se anziché la funzione y = f(x) si considera la funzione y = f(x+k), è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ascisse spostate di k; in particolare,

- \circ se k > 0 la traslazione è verso sinistra (esempio a sinistra, con k = 2);
- \circ se k < 0 la traslazione è verso destra (esempio a destra, con k = -2);



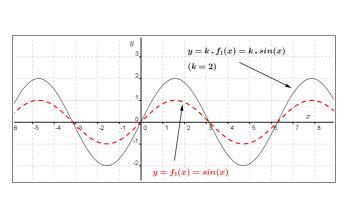


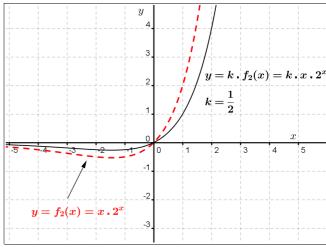
5. DILATAZIONE / CONTRAZIONE VERTICALE $g(x)=k \cdot f(x)$ (*k* positivo)

In generale, se anziché la funzione y=f(x) si considera la funzione $y=k\cdot f(x)$, è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ordinate moltiplicate per k, ma ciò corrisponde geometricamente a dilatare o a contrarre il grafico iniziale in senso verticale; in particolare,

- \circ se k > 1 si ha una dilatazione (esempio a sinistra, con k = 2);
- se 0 < k < 1 si ha una contrazione (esempio a destra, con k = 1/2).

E' ovvio che, se k fosse negativo, si avrebbe anche un ribaltamento verticale oltre alla dilatazione/contrazione.



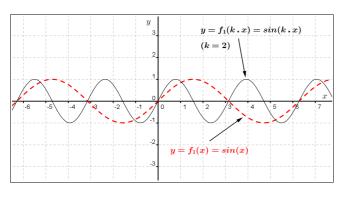


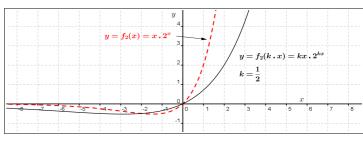
6. DILATAZIONE / CONTRAZIONE ORIZZONTALE $g(x) = f(k \cdot x)$ (*k* positivo)

In generale, se anziché la funzione y = f(x) si considera la funzione $y = f(k \cdot x)$, è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ascisse mutate di un fattore k, ma ciò corrisponde geometricamente a dilatare o a contrarre il grafico iniziale in senso orizzontale; in particolare,

- se k > 1 si ha una contrazione (esempio a sinistra, con k = 2);
- \circ se 0 < k < 1 si ha una dilatazione (esempio a destra, con k = 1/2).

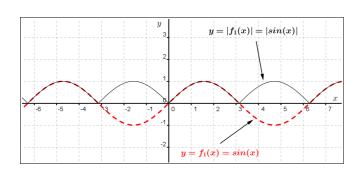
E' ovvio che, se *k* fosse negativo, si avrebbe anche un ribaltamento orizzontale oltre alla dilatazione/contrazione.

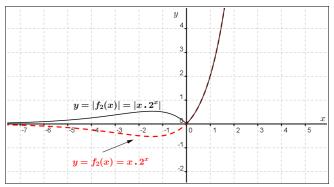




VALORE ASSOLUTO DELLA FUNZIONE g(x)=|f(x)|

In generale, se anziché la funzione y = f(x) si considera la funzione y = |f(x)|, è ovvio che il grafico ottenuto è formato da punti che hanno tutti le ordinate che sono il modulo di quelle del grafico iniziale:





E' immediato osservare che la parte positiva della funzione rimane invariata, mentre quella negativa viene ribaltata nel semipiano delle ordinate positive.

ESERCIZI

1. Per ciascuna delle seguenti funzioni elementari costruire i grafici risultanti da tutte le trasformazioni viste (scegliere k=2,

$$k=-2$$
 (laddove previsto un valore negativo per la trasformazione elementare) e $k=\frac{1}{2}$):
 $y=3; \quad y=\frac{1}{3}x; \quad y=x^2; \quad y=x^3; \quad y=\cos(x); \quad y=\tan(x); \quad y=\sqrt{x}; \quad y=\sqrt[3]{x}; \quad y=\left(\frac{1}{2}\right)^x=2^{-x}; \quad y=\log_2(x);$
 $y=\arcsin(x); \quad y=\arctan(x).$

2. Costruire i grafici di

- 1. $y=3\sin(x)-1$; suggerimento: costruire prima il grafico di $y=3\sin(x)$
- 2. $y = \log_2(x+1)$;
- 3. $y = \log_2(2x+1)$; suggerimento: costruire prima il grafico di $y = \log_2(x+1)$...
- 4. $y=3 \cdot \log_2\left(\frac{1}{x}\right)$; suggerimento: conviene prima applicare qualche proprietà dei logaritmi...
- 5. $y = |\log_2(x+2)|$; suggerimento: costruire prima il grafico di $y = \log_2(x+2)$...
- Costruire il grafico di $y = \log_2(2-x)$ Suggerimento: costruire prima il grafico di $y=\log_2(-x)$...
- Per chi ha installato Geogebra: controllare la correttezza dello svolgimento degli esercizi precedenti utilizzando il programma per tracciare il grafico delle funzioni.